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METHOD OF MOMENTS IN PROBLEMS OF DYNAMICS 
OF SYSTEMS WITH RANDOMLY VARYING PARAMETERS* 

M.F. DIMENTBERG 

Derivation of general equations of the method of moments for linear systems with 
random variation of parameters is presented on the basis of Markovian theory of 
diffusion processes. As an example, a system with a single degree of freedom with 
random variation of its natural frequency with periodic or random external action, 
and a system with two degree of freedom under conditions of stochastic combination 
resonance are considered. These examples are used for demonstrating the method of 
moments in conjunction with that of averaging. 

The method of moments, used for deriving from equations of motion a system of detenninis- 
tic equations with respect to first and second moments of variables of state, are widely ap- 
plied in the case of linear systems with random external actions and deterministic laws of 
parameters variation with time /1,2/, as well as for analyzing the stability of systems with 
random parameter excitation /1,3/. It seems that only some particular problemswere considered 
/4/ in the case of systems with simultaneous externalandparametric excitation. 

1. Equations of the method of moments are derived on the initial assumption that in a 
linear system the random parametric excitations are normal random processes ofthewhitenoise 

type, uncorrelated with random external effects. The latter are also assumed to be normaland 
can be expressed in terms of white noise processes using auxilliary systems of differential 
equations that form filters. With the indicated constraints the linear system of general form 
can be defined by the following system of stochastic differential equations (taken here in the 

meaning of Stratonovich /3,5/j: 

where E,(t), cr(t) are independent stationary centered normal processes of the white noise type 
of unit intensities (in the case of input systems with correlated perturbations, linear com- 
binations of the latter are introduced, as shown in /3/). The coefficients /j,i. (i,, yir can, 
generally, be time dependent functions, and functions fi(/) are also determinate. Initialvalu- 
es of variables Xi (t)of state are assumed to be either determinate or statistically independ- 
ent with respect to 5, (t), 5, (t). 

The basis of the method of moments is the property of noncorrelation of the (vector) 
process that satisfies Ito's stochastic differential equation and the vector of random excit- 
ations appearing in that equation. It is, consequently, necessary to pass from Eqs.(l.l) in 
conformity with known relations to the following system of stochastic equations in Ito'smean- 
ing /3,5/: 

Xi' zzz tbijmj +&F, F, F,cirTc,j,rj + fi(t) + 2 2 oijGjE,(t) + $J Yidr(t) (1.2) 
,=I ,=1 ,?lr=L ,=1 r=L r=L 

Applying to (1.2) the operation of mathematical expectation determination (denoted below 
by angle brackets), we obtain for the n-dimensional vector m(t) of the first moments mi (0 

=<xi (t)>of the variables of state the following deterministic equation: 

Equations for the second moments of variables of state Kik(t) = (zi (t) q.(t)) maybederived 
in two ways. First, it is possible to introduce the variables uih = .rizk and determine deriva- 
tives t/jr =xI'xk + zli'zi by virtue of Eqs.(l.2) in conformity with Ito's differentiation formula 
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/3,6/. It is also possible to determine uik' using the Stratonovich equations (1.1) in conform- 
ity with the "usual" rules of substitution of variables, and then pass from the obtained equa- 
tions in ui~ to the respective Ito's equations. Application to the latter of the operation 
of mathematical expectation determination results in both cases in the following system of 
equations with respect to second order moments: 

(1.4) 

where the first order moments m, and mk are determined by the integration of Eqs.(l.3). 
If the input system of equations contains a small parameter, it is possible to consider- 

ably reduce the imposed constraints (particularly those related to the Gaussian properties of 
processes 5 (t), 5 (0). For this the theorems on the asymptotically Markovian properties of solu- 
tions of such equations /5,7/ should be used together with the application of the described 
above algorithm for composing equations of moments to the respective limit vector diffusion 
process. With a finite small parameter such asymptotic approach, although approximate,has a 
number of advantages. First, it enables us to substantially increase the class of systemsthat 
can be analyzed by the method of moments. Its use does not necessarily require to consider 
parametric perturbations E(t) as processes of the white noise type (although they must be of 
the wide-band type). This makes it possible to analyze the effects associated with various 
spectral densities of this or that perturbation 5(t) at various characteristic frequencies of 
the system. Second, the application of the Krylov-Bogoliubov method of averaging in conform- 
ity with the theorem in /7/ enables us to eliminate the periodic dependence of solutionontime, 
thus substantially simplifying the equations of moments. Examples of application of this 
method are given below. They also show that its use enables us to obtain closed systems of 
equations for first and second order moments, as well as in the case of some specificnonlinear 
dependence for diffusion coefficients of the Markovian vector process (nonlinearities of the 
square root type). 

2. Consider the system with one degree of freedom 

z" + 2at' + Q% [I + 5 (t)l = y (t) (2.1) 

where E(t)is a stationary wide-band random process, and parameters a, Q are constant. Let in- 
itially y (t) = 5 (t), where j(l) is a wide-band random process, and spectral densities Q&E (O)# 
@cc (0) of processes E(t), 5 (t) and, also, parameter a are assumed small. It is then possible 
to introduce in (2.1) the substitution of variables 

z - A (t) cos 0 (t), J’ = - Q A (t) sin 0 (t), 0 = Qt f 'p (t) 

The application of the method of averaging in conformity with the theorem in /I/ yields 
for the amplitude A (t) the following abbreviated stochastic equation in the sense of Ito /2/: 

(2.2) 

where 1): (t),n~(t) are equivalent processes of the white noise type with intensity coefficients 
nQtt(Q)/Q and 1i,nQ2@&2Q)A’, respectively. We substitute the variable V = A4 in (2.2) and 
apply Ito's formula. As the result we obtain for the mathematical expectation my = (V> of 
the square of amplitude the equation 

nlv' = - (2a - nQW~t(2Q)) mv -t 2nQ6 (Q)/Q' (2.3) 

which is readily integrable in explicit form. When a< ',',nR' Q (2Q), the solution increases 
indefinitely as t-t co (system (2.1) is unstable in the mean square), and in the case of a> 
'l,nQ" @;2(2Q) with t- 00 we have the stationary solution 

A direct application of the method of moments to Eq.(2.1) (on the assumptionthatk(t), c(t) 
are independent normal processes of the white noise type with respective intensity coefficients 
DE = 2n(& (ZQ), D: =. 2n(I);; (9)) yields a system of three equations in second moments (z'),<x"), 
<.U'> /4/. When a, D;,D; are small, the slowly varying principal part of solutionofthisexact 
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system of equations is of the form <.S) : (X'z)iQ* = 1/2mv, where my is the solution of Eq.(2.3). 
It is interesting that the application of the theorem about the asymptotically Marcovian pro- 
perties of the process ,1(t) enable us to disregard the initial assumption of absence of cor- 
relation between E(t) and i(l), since in conformity with (2.2) in the approximation of the 
asymptotic method the effect of that correlation is immaterial. 

Let now in (2.1) y = ncosvt, where (A 1 and a, @g(w), a are smalls of the same order 
(A =lv - Q). We pass in (2.1) to the newslowvariables &(t), z,(t) using formulas 

z = I, cosvt -(- x, sin vt, I' = v (-ze sin vt f .rS cos vl) (2.4) 

Then from (2.1) we obtain the following system of equations in 2, (0, r, (f) : 
xc’ = -a~, - hs -t_ Iii2 Q [sc sin 2vt + I,$ (1 - 

cos 2vfl 5 (t), x,' = --CCI, -(- Aze + ai2v - 
(2.5) 

1,'p P [zC (1 -:- cos 2vl) + .r, sin Zvtl 5 (t) 
in which averaging over the period of terms not containing g(t) has been already carried outto 
abbreviate recording, and terms of higher order of smallness rejected. 

Applying the theorem in /J/ to the system of Eqs.(2.5) we obtain two stochastic Ito's 
equations with respect to components of the limit two-dimensional Markovianprocess ,rC(l). z,(f). 
The subsequent application of the operation of mathematical expectation determination yields 
the following system of deterministic equations in rnC,$ (t) :I <XC,, (t)>: 

m,' 3 __m, [a - l,g !I' (D, - Do)1 -:- m, (A - I,‘,0 SE) (2.6) 

m.V * _: -f&(4 - 1 ,. WE) - m, [a - ‘is P(D, - Do)1 + n 2v 
where 

Dz = j_ K,, (T)COS 2VT dr = 2rr$~ (2~) e 2nQgE (?!!) 

oz 

Do = 2n$, (0). E = 2i li,, (T) sin 2vT dT 

(2.7) 

and K;~(T) is the correlation function of process E (0 . 
The stationary solution (uz~,~' = 0) of the system of Eqs.(2.6) with constant a and v is of 

the form 
m, (a/(z.w~))~a + ‘/. Q’ (Do - DA1 (2.8) 

If the quantities D,,D,, E are smalls of higher order than a, it is possible to derive 
from (2.8) the expression for the quantity t.4, = mast (Z(I)) - (n1,?-f-m,2)'~~, which was earlier ob- 
tained in /8/ by the method of perturbations (more exactly, we are concerned here with the 
limit variant of the expression obtained in /8/ for ~~Qi'cz. where r0 is the correlation time 
of process 5 (t)). That expression shows (see also /2/) that when A-O, the quantity 
tA)IA,-1 is proportional to the remainder of ['PEE (0) - 0;; (2Q)l. where A0 := d(3va) is the amplit- 
ude of steady periodic oscillations of system (2.1) when E (t)=O. This was the basis of the 
conclusion in /8/ on the theoretical feasibility of lowering the amplitude of mechanical 
systems resonance oscillations by the introduction of special slow fluctuations ofthenatural 
frequency. However the method of perturbations has only a limited application range and, 
consequently, the detailed analysis of that method of reducing vibrations was carried out in 
/8/ by analog simulation. 

The method of moments considerably increases the scope of theoretical analysis in com- 
parison with that of perturbations. Using (2.5) we compose the equations of second moments 

Kc,-- (.xC?>, K,,q (,I,<‘>, Kc,<: (.rcxA> 

of processes xc(t), r,(1). On the basis of (2.5) we write expressions for derivatives of x~')..Y.'. 
~$s, then, using the theorem of /J/, apply to the obtained system of three shortened Ito's 
equations the operation of mathematical expectation detemlination, and obtain 

K,,' = - 121~ + ‘8’s 12’ (20, - :iD,)lK’,, + l,‘g R’ (20, -:- D?) K,, - 2AK,, (2.9) 

K,s,’ = --12a ;- ‘j’g Qz (200 - 30~1 -+ ‘isW (20, f DJ K,, f- EAK,, + am,/v 

Kc,’ = - [2a + ‘/&‘(2D, - D?)] K,, -I- (A - 1/aWE) (Kcc - K,,) 

whose stationary solution with constants n and v yields 
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(2.10) 

Formulas (2.10) and (2.8) show that, when D,,D~> E are of a higher order of smallness than 

a, then with A=0 the quantity (AZ) /Ao2- 1 is proportional to the remainder IQ,, (0) - 3Q,te 
(ml. Moreover, it follows from (2.10) and (2.8) that when QDEE(e) is proportional to some 
positive parameter 1~ and Q,b(0)>3Qk~(2P), then, as 11 increases, the mean square of amplitude 

(A*) first decreases (if A= 0)) and then begins to increase. This effect revealed in /~/US- 
ing analog simulation, and indicating limitations of that method of vibration reduction, can- 
not be defined in the perturbation method (it is associated with the approach to stability 
limit in the mean square defined by the equality Da = 4a/ SP). 

An expression similar to (2.10) obtains for <AZ), when in (2.1) y(t) is a narrow-band 

random process that satisfies the equation 

y" + 2fiy' + v2y = 5 (t); p KY, v z=z & (2.11) 

where c(t)is a stationary centered wide-band random process with spectral density %.(@) . 
Setting 

y = y,cosvd+ y,sinvt, y' = v (-y, sin vt 7-y, cosvt) 

and applying the theorem of /7/, we obtain a system of four stochastic Ito's equations in the 

slow variables rc,,(t), y,,, (t) whose first moments are zero (at leastin the case of zero initial 

conditions). For the second order moments K,,,, = (&(t)x,(t)>, Kseys =(xc(t)y,(t)),. . we have a 

system of ten equations 

K,,,, = - (2a + q) K,,,,. - ZAK,,,, .)- 1/aQ2(2Do + 0%) K,,,, - v-‘Krqs (2.12) 

K;,,, = - (2a + q) K,,,, -1. 2AK,,,, A- v-‘K,,~~ 

K~.,,, = - [Za -+. 1!&2(2Do - Dz)] K,,,, -I- (A - ‘i8Q2E) (K,,,, - K,,,,) f l/z~-l (Kreye - Krsys) 

K;,,, = - 2pK,,,, + D;W, K;sys = - 2PK,,,, f- D;lv’ , K,,, = - 2BK,c,, 
K’. leUe = - (a -’ B q) Kxc2/c - ~~~~~~ - li~+Kycys 

K;,,, = - (a .I- P -;. @KSsy. -i- rKxcys l!~+Kyrys 

K.~,u, = - (a + p c q) Kxrys -- rKxsys - ‘/zY-‘K~~~~ 

K,,, = - (a -ik P -1 q)K,,,,i ~~~~~~ -, '/~v-~~~~~~~; 
DG = 2zQL6 (Q), q = ‘/,Q* (D, - D,), r = A - ',l&'E 

A stationary solution of closed form can be obtained for the system of Eqs.(2.12) for a 

constant Y, from which we obtain 

(AZ> =-z (z-~') + <x,~> L. (DL/2@')(a (3 -+ f/) (2.13) 

[(a -i- I', .-; (I)? -(- r*]-' (2a - ‘,‘,SPD,)-’ 

Having determined the quantity (A'>/(ii'), on the basis of (2.13), where (AZ)0 isthevalue 

of <AZ> when j (I) G 0, enables us to draw certain conclusions about the feasibility of reduc- 

ing vibrations induced by a narrow-band external excitation by random fluctuations of natural 

frequency. Qualitatively these conclusions are similar to those obtained above for the case 

of external periodic excitation. However we have in the considered here case the additional 

effect of the external excitation spectrum width. Assuming in (2.13) the quantities D,, Do. E 
to be smalls of higher order than a, we find that when A = 0, the inequality <AZ>< (AZ>, 
is satisifed when 

The term with fi,'a shows that as the width of external excitation spectrum increases, the 

effectiveness of the considered method of damping vibrations, as expected, decreases. 

Equations (2.8), (2.9) or (2.12) or moments can be used for the numerical solutionofthe 

nonstationary problem of passing through resonance in a system with random variationofnatural 

frequency, 'on condition that the external excitation frequency Y is a slowly varying function 

of time. 

3. Consider the following system with two degrees of freedom: 

where k(t), ci(t) (i = 1,2) are stationary wide-band centered random processes. Assuming that 

in (3.1) ai, ?.ijY @c; ((,I), 0;;; ((0) (i, j = 1, 2) are small, we introduce the substitution of variabl- 

es 
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xj =lijcosei, xi' = ---S2Ji sin ei, ei = C&t+C&, vi =Ai2 

and apply the method of averaging. As the result we can obtain the following two stochastic 
equations in Stratonovich's sense: 

V,' = [-2a, + vzy (D, - D_)l v, + ‘iayl*(D+ + D_)V, i (3.2) 

w), - y1](2D+V,V*)"7+ (t) - (~_V1V*)“~n_ (t)l i- 
(8D,V,)‘lq, (t), V; = [-2a, + lIzy (D, - D_)lV, + 

“zy2’ (D, f DJV, + 20, + yz [(2D+V,VJ”q+ (t) + 
(2D_F,V,)“7_ (t)] + (8D,VJ”‘tlg (t), yi = hij/Qi 

Y = Y1Yn* Di = (2n/‘Qi’) @cti (Qi), D* = ~TC@BE (03 
Q* = n,* 52, 

where nk(t),~],,~(t) denotes independent random processes of the white noise type of unit inten- 
sity. Passing from (3.2) to respective Ito's equations and applying the operation of mathe- 
matic expectation determination with respect to mean squares of amplitude mi = <V,)which with 
aj,bi,, ni constant has the stationary solution 

mi = 2Q-' {Di [2aj - y (D+ - D-)1 + Djyi (D+ + D_)} (3.3) 

Q = 2a,a, - y (a, + a,)(D+ - D_) - 2y2D+D_, i = 1,2; j =+ i 

This solution has a meaning when the inequality Q>O which represents the stability con- 
dition for system (3.1) in the mean square, is satisfied. Particular variants of that con- 
dition that obtain for D_=O,y>O.and D+=O, y<O were derived in /9/ in relation to summary 
and difference stochastic resonance combinations. Another particular variantof condition Q>O 
obtains when D+=D_ (mixed summary-difference stochastic combination resonance), coincides 
with the exact condition of stability of system (3.1) in the mean quadratic, obtained in /lo/ 
by a direct comparison with the equations of moments for system (3.1) with white noise % (1) 
(when %i (t) sa 0). Formula (3.3) shows that when al#oa,, then for r>O(y<O) the presence in 
the spectrum of process %(t) of a nonzero components with frequency &X(62+) has a stabilizing 
effect on the excitation of sunrnary (difference) combination resonance. When a,= a*, the 
condition of stability is determined only by one of the quantities D+ or D_ (respectively, 
for y>O or Y < 0) independently of the value of the other of these quantities. 

Note that when processes %(t),&(l) are assumed to be independent white noise the inequal- 
ity in (3.1) can be used for obtaining a system of 10 equations in second order moments CZ;Z~>, 
(ZixJ’), tzi’zi’>, i,i = 1, 2 (the corresponding homogeneous system of equations was derived in /lo/). 
A stationary solution of explicit form can be obtained for that system, and, as expected, the 
equalities Czi') ='jzmi (i = i,2), where mi are determined by formulas (3.3) with D, =D_, are valid. 

Having composed Ito's equations with respect to processes Uij= I'iL'j using (3.2) and apply- 
ing the operation of mathematical expectation determination, we obtain for second order equa- 
tions Kij= tl/iVj'j, (i,j = 1,2) of processes Vi(t) the system of three equations 

Kn' = ]--c1+2? (D+---)]&+4y?(D+ + D_)K,,+lGD,m, (3.4) 
KU' = Yz2 (D+ + D-) K,, + [- 2 (a1 $ a*)+ 4y(D+ - D_)]K12 + 
YI'(D++D-_)K*~+~(D~~~+ D,m,) 

Kzr’ = 4Y2* CD+ + D-J Ku + [- 4% + 2~ (D+ - D_)] li,, + 16D,m2 

The system of Eqs.(3.4) was integrated on a computer for the case of D_= 0 and several 
combinations of parameters. The results revealed the following regular relationship: in a 
steady state the normalired'correlation coefficient 

K1a---mlmz 
'la = (K,, - mix)"' (K*,-_m,2)'l' 

is a monotonically increasing function of parameter D,, and PIa= Owhen D+= 0 and Pla- 1 with 
the determinant of system (3.4) approaching zero, i.e. with the approachto thestabilitybound- 
ary of system (3.1) with respect to fourth order moments. This proves the theoretical feasib- 
ility of identifying the stochastic combination resonance by analyzing the experimentally ob- 
tained linear combination ~(1) of processes li (t) . Processes Vi are separated from the 
recorded realization of s(t) using a pair of band-pass filters with central frequencies $?I and 

Qa . A nonzero Olr indicates the presence in the system of a combination resonance, and the 
quantity i- plz may be considered as the stability margin of the system with respect to fourth 
order moments. 

We note in conclusion that the described here method of moments can be readily extended 
to systems in which the arbitrary parametric perturbations are correlated with external random 
excitations. In that case the vector equation (1.3) in first order moments contains an addi- 
tional term independent of Xi, containing coefficients of reciprocal intensities of processes 
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of the white noise type E(f), c(t). 

The author thanks V.B. Kolmanovskii for discussing this paper. 
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